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Abstract. Attenuation of sound wave energy in layered conductors with several charge-carrier
groups is investigated theoretically. The existence of a group with a quasi-one-dimensional energy
spectrum is shown to affect the behaviour of the rate of sound attenuationG in a magnetic fieldH
fundamentally. Giant oscillations, as well as resonant peaks ofG depending on 1/H , are predicted.

1. Introduction

The search for new superconducting materials has focused attention on conductors of organic
origin that possess layered structure. Due to their specific behaviour these conductors have
become objects of intensive experimental study both in the normal and superconducting states.
In this connection the analysis of their electronic structure seems to be useful.

Many organic layered conductors have metal-type electrical conductivity, and the well-
developed concept of quasi-particles carrying a charge in metals can be applied for describing
their electronic properties.

At the temperature of liquid helium, the Shubnikov–de Haas effect is clearly manifested in
the organic conductors, which proves that the samples used in experiments are mono-crystals
with the charge-carrier free-path length significantly exceeding the radius of curvature of the
electron trajectory in a strong magnetic field. Under these conditions the electron energy
spectrum of layered conductors can be studied by means of measurements of their kinetic
characteristics. In particular, acoustic phenomena should prove informative and useful for
investigating the electronic structure in detail.

Organic conductors show sharp anisotropy in their electrical conductivity: the conductivity
along the layers is substantially higher than that along the normal to the layers. This is
apparently connected with the anisotropy of the velocities on the Fermi surface and restricts
the choice of suitable models for the Fermi surface. The form of a weakly warped cylinder
is in good agreement with the experimental studies of galvanomagnetic phenomena and
the Shubnikov–de Haas effect in salts of tetrathiafulvalene of the type (BEDT-TTF)2JBr2
[1–5]. However, the unusual behaviour of the magnetoresistance of the family of salts
(BEDT-TTF)2MHg(SCN)4 (M = K, Rb, Te) [6, 7] suggests that the Fermi surface of such
layered conductors is complicated and may contain two quasi-1D sheets in addition to a weakly
warped cylinder. The sheets are weakly warped planes on which the velocity of charge carriers
has a preferred direction in the layer plane.
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2. Theoretical model

We consider the propagation of the acoustic waves in low-dimensional conductors placed in
an external magnetic fieldH. The sound wave can be described by means of the elasticity
theory equation for the ionic displacementu:

−ω2ρui = λijlm ∂ulm
∂xj

+ Fi (1)

whereρ andλijlm are the density and elastic tensor of the crystal,ulm = (∂ul/∂xm+∂um/∂xl)/2
is the deformation tensor. The acoustic wave is taken to be monochromatic with frequencyω,
so the differentiation with respect to the time variable is equivalent to multiplication by(−iω).
Perturbation of the electron system due to the sound causes the appearance of the force

Fi = µ0( j ×H)i +
imω

e
ji + f di (2)

acting upon the lattice from the conduction electrons [8, 9]. Herem ande are the electron
mass and charge,µ0 is the magnetic permeability in vacuum.

The electric current density

ji = − 2

(2πh̄)3

∫
eviψ

∂f0

∂ε
d3p ≡ 〈eviψ〉 (3)

and the deformation force density

f di =
∂

∂xk
〈3ikψ〉 (4)

are determined by the solution of the kinetic equation for the charge-carrier distribution func-
tionf0{ε(p)+iωp·u}−ψ ∂f0/∂ε in the concomitant coordinate system which moves together
with the crystal lattice with the velocity−iωu.

Here f0 is the Fermi distribution function,v, p and ε(p) are the electron velocity,
momentum and energy, respectively;3ik is determined by expressions (8) and (9).

The functionψ determines the non-equilibrium state of the electron system and can be
found from the kinetic equation. In the linear approximation under weak perturbation of the
electron system by the sound wave the kinetic equation takes the form

v
∂ψ

∂r
+
∂ψ

∂t
+

(
1

τ
− iω

)
ψ = g

g = −iω3ij (p)uij + eẼ · v.
(5)

The collision operator is represented by the approximation of the relaxation timeτ . Time
t determines the position of a charge on its trajectory in a magnetic field according to the
equation of motion

∂p

∂t
= ev ×H. (6)

In the concomitant coordinate system the perturbation of electrons by the sound wave is
connected with the electric field

Ẽ = E − iωµ0u×H +
mω2u

e
(7)

and with the renormalization of the energy spectrum under the strain

δε = λij (p)uij . (8)
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The kinetic equation contains the components of the deformation potential tensorλij (p)

in the form that accounts for the conservation of the charge-carrier number, i.e.

3ik(p) = λik(p)− 〈λik(p)〉〈1〉 . (9)

The components of the electric fieldE generated by the sound wave should be determined
from the Maxwell equation

curl curlE = iωµ0j (10)

and the electroneutrality condition which reduces to the continuity condition for the electric
current

div j = 0. (11)

Because of the high density of charge carriers in a conductor, the displacement current is
neglected.

The solution of the kinetic equation can be expressed as

ψ =
∫ t

−∞
dt ′ g[x + x(t ′)− x(t)] exp[ν(t ′ − t)] (12)

whereν = 1/τ − iω.
Let the sound wave propagate along thex-axis. In the Fourier representation equations (1),

(10) and (11) reduce to a set of equations for the Fourier components, ionic displacementu(k)

and electric fieldẼ(k):

iωµ0jα(k) = k2
[
Ẽα(k) + iωµ0

(
u(k)×H)

α

]
α = y, z

jx(k) = 0
−ω2ρui(k) = −λixlxk2ul + (imω/e)ji(k) +µ0

(
j(k)×H)

i
+ ik〈3ixψ(x)〉.

(13)

Using the solution of the kinetic equation, we can expressji(k) = 〈eviψ(k)〉 and〈3ixψ(k)〉
in the forms

ji(k) = σij (k)Ẽj (k) + aij (k)kωuj (k)
〈3ixψ(k)〉 = bij (k)Ẽj (k) + cij (k)kωuj (k).

(14)

The Fourier transforms of the electrical conductivity tensor and acoustoelectronic tensors
aij (k), bij (k), cij (k) are described by the following expressions:

σij (k) = 〈e2viR̂vj 〉 aij (k) = 〈eviR̂3jx〉
bij (k) = 〈e3ixR̂vj 〉 cij (k) = 〈3ixR̂3jx〉

(15)

where

R̂g ≡
∫ t

−∞
dt ′ g(t ′) exp{ik[x(t ′)− x(t)] + ν(t ′ − t)}.

By substituting equations (15) into the equation set (13), we obtain a set of algebraic
equations which is linear with respect toui(x) and Ẽi(x). The condition for the existence
of a non-trivial solution of this set of equations (equating the system determinant to zero)
represents the dispersion equation for the problem. The imaginary part of the roots of the
dispersion equation determines the attenuation of the acoustic and electromagnetic waves,
and the real part describes the renormalization of their velocities. Because of the great mass
difference of the ions and the electrons, the rootk related to the sound wave and the rootke
related to the electromagnetic wave differ significantly.
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To clarify the specific features of the propagation of sound throughout the low-dimensional
conductors we consider a layered conductor with two groups of charge carriers: the quasi-1D
group whose charge carriers obey an energy–momentum relation of the type

ε1(p) = ±p ·Nv + η1
h̄

a
v cos

(
apz

h̄

)
(16)

and the quasi-2D one with the dispersion law of the type

ε(p) = p2
x + p2

y

2m
+ η

h̄

a
v0 cos

(
apz

h̄

)
v0 =

(
2εF

m

)1/2

. (17)

Hereη1, η � 1; a is the separation between layers, ¯h is the Planck constant,v is the velocity
of electrons with the Fermi energyεF belonging to the quasi-1D sheet of the Fermi surface.
The unit vectorN = {cosφ, sinφ, 0} lies in the plane of the layers and makes an angleφ with
the direction of the wave propagation.

3. Calculation

Let us consider the longitudinal acoustic wave. Using equations (13)–(15), it is easily seen
that forωτ � 1 in the limit of smallη andη1, the rootk of the dispersion equation can be
represented as follows:

k = ω

s
+ k1 (18)

where the small correctionk1 takes the form

k1 = ik2

2ρs

1

(1− ξ σ̃yy)
{
ξ(ãyx b̃xy − c̃xx σ̃yy) + c̃xx − i(ãyx − b̃xy)Hzµ0

k
+ σ̃yy

H 2
z µ

2
0

k2

}∣∣∣∣
k=ω/s

(19)

with s = (λxxxx/ρ)1/2; ξ = iωµ0/k
2 and

σ̃αβ = σαβ − σαxσxβ
σxx

ãαj = aαj − axjσαx
σxx

b̃iβ = biβ − bixσxβ
σxx

c̃ij = cij − bixaxj
σxx

(20)

for α, β = y, z.
The integration in the expressions (15) must be taken over all of the sheets of the Fermi

surface and each of the components is the sum of the contributions from the quasi-1D and
quasi-2D groups of electrons.

If the magnetic field is not directed in the layer plane, the charge carriers of the quasi-2D
group gyrate along closed orbits with the frequency�. In the range of the magnetic fields
where the radius of curvature of the electron orbit is much less than the electron mean free path
l but exceeds the sound wavelength 1/k significantly, the electrons of the quasi-2D group are
involved in Pippard oscillations [10]. This effect is associated with the periodic repetition of the
conditions for the most effective interaction between electrons and the sound wave. Under the
Pippard effect conditions the contributionsσ (2)ij , a(2)ij , b(2)ij , c(2)ij to the acoustoelectronic tensors
from electrons of the quasi-2D group can be easily calculated by the method of stationary
phases. In doing so, the assumption is that components of the tensor3

(2)
ik (p) coincide in order

of magnitude with the Fermi energy and that the magnetic field is oriented along thez-axis.
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We present the expressions for some of the components:

σ (2)yy =
4N2e

2

mνπkD
[1− J0(ζ ) sinkD]

σ (2)yx = −σ (2)xy =
4N2e

2

mνπkDkl
J0(ζ ) coskD

c(2)xx =
N2mv

2
0

πνkD
[1 + J0(ζ ) sinkD].

(21)

Here and in what follows,N1,2 are the densities of charge carriers of the quasi-1D and
quasi-2D groups, respectively.J0(ζ ) is the Bessel function,ζ = kRη, R = 2h̄/eµ0Ha,
D = 2v0m/eµ0H .

The other components of the acoustoelectronic tensor behave in an analogous way.
At ζ � 1 almost all charge carriers with the quasi-2D energy spectrum contribute to the
oscillations and, in contrast to the case for an ordinary metal, the amplitude of the oscillations
is great.

The presence of the preferred direction for the velocities of the electrons of the quasi-
1D group manifests itself in the dependence of their deformation potential3

(1)
ij on φ. If

deformation of the crystal does not cause redistribution of charges between the electron groups,
it is reasonable to suppose, keeping in mind formula (9), that3

(1)
ij vanishes in the zeroth

approximation in the small parameterη1. If we set3(1)
xx = −η1εF cosφ, the expressions for

the acoustoelectronic coefficients take the form

σ
(1)
αβ = hφ

N1e
2v2

νεF
NαNβ α, β = x, y c(1)xx = η2

1hφ
N1εF cos2 φ

ν

a(1)xx = b(1)xx = iη1hφ
N1ev

ν
kl cos3 φ

a(1)yx = b(1)xy = iη1hφ
N1ev

ν
kl cos2 φ sinφ

(22)

where

hφ = [1 + (kl)2 cos2 φ]−1 l = vτ.

4. Results and discussion

In the main approximation in the small parameters(�τ)−1 and(kD)−1, the sound attenuation
rate is

G = G0�τ
1− J 2

0 (ζ ) + kDgφ [1 + J0(ζ ) sinkD] + η2
1kDf

2
φ cos2 φ[1− J0(ζ ) sinkD]

1− J0(ζ ) sinkD + kDgφ

∣∣∣∣
k=ω/s

(23)

whereG0 = N2mωv0/4πρs2,� = eµ0H/m; the functions

fφ = N1

N2

(kl)2 cos2 φ

1 + (kl)2 cos2 φ
gφ = N1

N2

sin2 φ

1 + (kl)2 cos2 φ

do not exceed unity in the case where the densities of the charge carriers of the first and the
second groups are equal. In expression (23) we have neglected unity in comparison with the
magnitude|ζ σ̃yy |. This corresponds to the inequalityπ2ω2D/s3ω2

0τµ0 � 1, satisfied in the
range of ultrasonic frequencies if the plasma frequencyω0 is comparable to that of ordinary
metals. Inessential numerical factors of the order of unity in formula (23) have been omitted.

The presence of the charge-carrier group with the quasi-1D dispersion law leads to the
essential anisotropy in the layer plane of the sound wave attenuation. If the wave propagation is
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along the preferred direction of the velocities of the electrons belonging to this group(φ = 0),
the rate of sound wave attenuation can be represented as follows:

G = G0

(
�τ

1− J 2
0 (ζ )

1− J0(ζ ) sinkD
+ η2

1
N2

1

N2
2

ωτv0

s

)∣∣∣∣
k=ω/s

. (24)

At ζ � 1 the corrugation of the quasi-2D sheet of the Fermi surface is small enough
that the first term in formula (24) acquires the form of sharp resonant peaks. The resonant
dependence ofG onH−1 can be observed by measurements of the derivative ofGwith respect
to the magnetic field. In this case charge carriers with the quasi-1D energy spectrum contribute
to the ‘background’ part ofG. The case where the 2D group exists alone(N1 ≡ 0) leads to
the result given in [11].

If the angleφ is being deflected fromφ = 0, then the resonant character of theG(H−1)

dependence holds as long asπ/2− φ > (kD)1/2/kl. When the angleφ approachesπ/2, the
resonant behaviour of the sound attenuation rate changes in the course of giant oscillations,
which atφ = π/2 take the form

G = G0�τ {1 +J0(ζ ) sinkD} ' G0�τ

{
1 + sinkD − ζ

2

4
sinkD

} ∣∣∣∣
k=ω/s

. (25)

At sinkD = −1 the sound attenuation rateG attains its minimum value, which is less
when the corrugation of the Fermi surface is weaker.

The numerical calculations based on formula (23) are analysed graphically in 3D space.
The dependence of the acoustic absorption coefficientG/G0 on the magnetic fieldh = H0/H ,
whereH0 = 2ωv0m/esµ0, and the cosine of the anglex = cosφ at η = η1 = 10−2,
N1/N2 = 1, kl = 102 is shown in figure 1. It is easy to see that under these conditions the
inequalitiesωτ � 1,�τ � 1, ζ � 1, 1/k � r � l, are valid.

Figure 1. The dependence of the acoustic absorption coefficientG/G0 on the magnetic field
h = H0/H and the angle between the preferred direction of the 1D group of electronsx = cosφ
atη = η1 = 10−2, kl = 102,N1 = N2.
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In the presence of the quasi-1D charge-carrier group, the resonance dependence of the
rate of sound attenuation transforms into giant oscillations when the direction of the acoustic
wave propagation changes.

The cross sections of the graphic (figure 1) in the planesx = 0 andx = 1 are presented in
figures 2 and 3, respectively. The resonant peaks are given when the wave propagates parallel
to the preferred direction of the velocities of the electrons belonging to the 1D group(x = 1;
figure 3). If the wave propagates in the direction perpendicular to the preferred direction, the
giant oscillations appear (x = 0; figure 2).

Figure 2. The dependence of the acoustic absorption coefficientG/G0 on the magnetic field at
η = η1 = 10−2, kl = 102,N1 = N2, x = 0.

Figure 3. The dependence of the acoustic absorption coefficientG/G0 on the magnetic field at
η = η1 = 10−2, kl = 102,N1 = N2, x = 1.

Thus the observation of the giant oscillations of the rate of sound attenuation is proof of
the existence of the quasi-1D group of carriers.

Magnetoacoustic measurements in layered conductors enable the preferred direction for
velocities of charge carriers belonging to this group as well as the degree of low dimensionality
of the electron energy spectrum to be determined.
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